S4MPLE - Sampler For Multiple Protein-Ligand Entities: Simultaneous Docking of Several Entities

نویسندگان

  • Laurent Hoffer
  • Dragos Horvath
چکیده

S4MPLE is a conformational sampling tool, based on a hybrid genetic algorithm, simulating one (conformer enumeration) or more molecules (docking). Energy calculations are based on the AMBER force field [Cornell et al. J. Am. Chem. Soc. 1995, 117, 5179.] for biological macromolecules and its generalized version GAFF [Wang et al. J. Comput. Chem. 2004 , 25, 1157.] for ligands. This paper describes more advanced, specific applications of S4MPLE to problems more complex than classical redocking of drug-like compounds [Hoffer et al. J. Mol. Graphics Modell. 2012, submitted for publication.]. Here, simultaneous docking of multiple entities is addressed in two different important contexts. First, simultaneous docking of two fragment-like ligands was attempted, as such ternary complexes are the basis of fragment-based drug design by linkage of the independent binders. As a preliminary, the capacity of S4MPLE to dock fragment-like compounds has been assessed, since this class of small probes used in fragment-based drug design covers a different chemical space than drug-like molecules. Herein reported success rates from fragments redocking are as good as classical benchmarking results on drug-like compounds (Astex Diverse Set [Hartshorn et al. J. Med. Chem. 2007, 50, 726.]). Then, S4MPLE is successfully challenged to predict locations of fragments involved in ternary complexes by means of multientity docking. Second, the key problem of predicting water-mediated interaction is addressed by considering explicit water molecules as additional entities to be docked in the presence of the "main" ligand. Blind prediction of solvent molecule positions, reproducing relevant ligand-water-site mediated interactions, is achieved in 76% cases over saved poses. S4MPLE was also successful to predict crystallographic water displacement by a therefore tailored functional group in the optimized ligand. However, water localization is an extremely delicate issue in terms of weighing of electrostatic and desolvation terms and also introduces a significant increase of required sampling efforts. Yet, the herein reported results - not making use of massively parallel deployment of the software - are very encouraging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

S4MPLE--Sampler for Multiple Protein-Ligand Entities: Methodology and Rigid-Site Docking Benchmarking.

This paper describes the development of the unified conformational sampling and docking tool called Sampler for Multiple Protein-Ligand Entities (S4MPLE). The main novelty in S4MPLE is the unified dealing with intra- and intermolecular degrees of freedom (DoF). While classically programs are either designed for folding or docking, S4MPLE transcends this artificial specialization. It supports fo...

متن کامل

Investigation the Mechanism of Interaction between Inhibitor ALISERTIB with Protein Kinase A and B Using Modeling, Docking and Molecular Dynamics Simulation

The high level of conservation in ATP-binding sites of protein kinases increasingly demandsthe quest to find selective inhibitors with little cross reactivity. Kinase kinases are a recently discovered group of Kinases found to be involved in several mitotic events. These proteins represent attractive targets for cancer therapy with several small molecule inhibitors undergoing different ph...

متن کامل

Structure Optimization of Neuraminidase Inhibitors as Potential Anti-influenza (H1N1Inhibitors) Agents Using QSAR and Molecular Docking Studies

The urgent need of neuraminidase inhibitors (NI) has provided an impetus for understanding the structure requisite at molecular level. Our search for selective inhibitors of neuraminidase has led to the identification of pharmacophoric requirements at various positions around acyl thiourea pharmacophore. The main objective of present study is to develop selective NI, with least toxicity and dru...

متن کامل

Structure Optimization of Neuraminidase Inhibitors as Potential Anti-influenza (H1N1Inhibitors) Agents Using QSAR and Molecular Docking Studies

The urgent need of neuraminidase inhibitors (NI) has provided an impetus for understanding the structure requisite at molecular level. Our search for selective inhibitors of neuraminidase has led to the identification of pharmacophoric requirements at various positions around acyl thiourea pharmacophore. The main objective of present study is to develop selective NI, with least toxicity and dru...

متن کامل

Multiple ligand simultaneous docking: Orchestrated dancing of ligands in binding sites of protein

Present docking methodologies simulate only one single ligand at a time during docking process. In reality, the molecular recognition process always involves multiple molecular species. Typical protein-ligand interactions are, for example, substrate and cofactor in catalytic cycle; metal ion coordination together with ligand(s); and ligand binding with water molecules. To simulate the real mole...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical information and modeling

دوره 53 1  شماره 

صفحات  -

تاریخ انتشار 2013